Accepted paper with abstract, SoCG'09

Mashhood Ishaque, Bettina Speckmann and Csaba Toth
Shooting Permanent Rays Among Disjoint Polygons in the Plane
We present a data structure for ray shooting and insertion in the free space among disjoint polygonal obstacles with a total of n vertices in the plane. The portion of each query ray between the starting point and the first obstacle hit is inserted permanently as a new obstacle. Our data structure uses $O(n \log n)$ space and preprocessing time, and it supports m successive ray shooting and insertion queries in $O\left(n \log ^{2} n+m \log m\right)$ total time. We present two applications for our data structure:
(1) Our data structure supports efficient implementation of autopartitions in the plane, that is, binary space partitions where each partition is done along a supporting line of an input segment. If n input line segments are fragmented into m pieces by an auto-partition, then it can now be implemented in $\mathrm{O}\left(\mathrm{n} \log ^{2} \mathrm{n}+\mathrm{m} \log \mathrm{m}\right.$) time. This improves the expected runtime of Patersen and Yao's classical randomized autopartition algorithm for n disjoint line segments in the plane to $O\left(n \log ^{2} n\right)$.
(2) If we are given disjoint polygonal obstacles with a total of n vertices in the plane, a permutation of the reflex vertices, and a half-line at each reflex vertex that partitions the reflex angle into two convex angles, then the convex partitioning algorithm draws a ray emanating from each reflex vertex in the prescribed order in the given direction until it hits another obstacle, a previous ray, or infinity. The previously best implementation (with a semi-dynamic ray shooting data structure) requires $\mathrm{O}\left(\mathrm{n}^{3 / 2-\varepsilon / 2}\right)$ time using $O\left(n^{1+\varepsilon}\right)$ space. Our data structure improves the runtime to $O\left(n \log ^{2} n\right)$.

